top of page

Gino News

quinta-feira, 13 de fevereiro de 2025

Revolução nas Recomendações: Como os Hybrid Graph Neural Networks Transformam Sistemas de Sugestão

Tecnologia Inteligência Artificial Inovação

A Kumo AI apresenta sua arquitetura inovadora de hybrid graph neural networks (hybrid GNNs), que promete revolucionar os sistemas de recomendação ao integrar comportamentos de usuários e otimizando resultados em desafios como o Kaggle H&M recommendation challenge e em cenários reais de clientes.

Create a 2D, linear perspective vector image in a corporate, flat style. The image has a white, untextured background. The central focus is a visual representation of Kumo AI's innovative Hybrid Graph Neural Networks (hybrid GNNs), an architecture set to revolutionize recommendation systems by integrating user behaviors and optimizing results in challenging situations such as campaigns and real-world scenarios. Users are represented as blue circles connected by lines to items, represented as orange squares, showing interactions with the users. Arrows illustrate the flow of interactions and potential recommendations with measurement charts highlighting the performance metrics showing the effectiveness of the new model.

Imagem gerada utilizando Dall-E 3

Nos últimos anos, os sistemas de recomendação têm evoluído significativamente, saindo de abordagens de fatoração de matrizes para técnicas mais complexas, como graph neural networks (GNNs). A Kumo AI, pioneira na aplicação de hybrid GNNs, criou um modelo que demonstra eficácia tanto em desafios de ciência de dados quanto na prática, permitindo que empresas como Uber e Amazon ofereçam experiências excepcionais aos clientes.


O desenvolvimento de sistemas de recomendação é complicado devido às variações nas preferências dos usuários e ao comportamento humano complexo. A necessidade de gerar recomendações personalizadas se torna ainda mais desafiadora em um cenário de big data, onde novos usuários podem ter interações mínimas, e itens com pouca informação são difícil de classificar. Muitas equipes de engenharia têm investido fortemente na construção e manutenção de pipelines de recomendação complexos, que envolvem diversas etapas de geração de candidatos e modelos de ranking.


O modelo hybrid GNN é projetado para capturar comportamentos sutis dos usuários ao processar dados com um subgrafo centrado em cada nó de usuário. Este método não apenas melhora a precisão das recomendações, mas também permite uma diferenciação entre interações repetitivas e exploratórias, ajustando-se às preferências de cada usuário de forma adaptativa. Além disso, a arquitetura foi testada no desafio de recomendação H&M do Kaggle, onde obteve um desempenho superior em comparação com outras abordagens.


  1. Hybrid GNN alcançou um MAP@12 de 0.031, superando os 0.024 do top 10% no Kaggle.

  2. Abertura para previsão de interações futuras entre usuários e itens utilizando um grafo bipartido.

  3. Os modelos podem ser otimizados em um único treinamento, reduzindo a complexidade de implementação.

  4. Kumo demonstrou um aumento significativo em receitas através da implementação do hybrid GNN em empresas.

  5. O método foi mais de 100% mais eficaz que abordagens tradicionais em estudos de ablação.


O hybrid GNN demonstra uma percepção mais profunda das preferências dos usuários, capturando tanto a repetitividade quanto a exploração de itens com base em um escalar específico para cada usuário, otimizado através de uma rede neural de múltiplas camadas. Isso se traduz em previsões mais precisas para interações futuras, aprimorando a experiência do usuário e proporcionando soluções escaláveis para negócios.


- Desempenho superior em competições de ciência de dados. - Facilidade de implementação e otimização. - Capacidade de personalização em tempo real. - Impacto financeiro positivo para empresas.


Com o aumento das expectativas dos consumidores por recomendações personalizadas e precisas, as tecnologias como hybrid GNN podem se estabelecer como padrão para o futuro dos sistemas de recomendação. Além disso, essa abordagem pode inspirar novas práticas em mercados diversos, ampliando a aplicação de inteligência artificial em contextos comerciais.


A Kumo AI demonstra que os hybrid GNNs possuem um potencial transformador nos sistemas de recomendação, alavancando a performance e a experiência do cliente. À medida que o mercado evolui, é essencial que as empresas se mantenham atualizadas sobre as inovações em inteligência artificial. Os leitores são encorajados a se inscreverem na nossa newsletter para mais informações sobre o impacto da IA em negócios, onde também poderão encontrar conteúdos atualizados diariamente.


 
FONTES:

    1. Kaggle H&M recommendation challenge

    2. Kumo AI

    3. Graph Neural Networks

    REDATOR

    Gino AI

    13 de fevereiro de 2025 às 17:34:59

    PUBLICAÇÕES RELACIONADAS

    An innovative 2D, flat, corporate-style, vector artwork visualization on a plain, untextured white background. The image portrays a photographer, symbolizing image creation, manipulating a digital environment scene. The environment is laced with vibrant colors drawing attention to innovation and features elements hinting at video games. To illustrate the use of synthetic data, the digital environment is filled with game objects. Also, in the scene is a software interface representative of game engines like Unity and Unreal Engine, showcasing the evolving future of AI image generation.

    A Revolução da IA na Imagem: Como os Motores de Jogo Estão Transformando a Criação de Dados Sintéticos

    Create a 2D, flat illustration in a corporate style. Set against a white, textureless background, depict a biohybrid device implanted in a mouse's brain, made by Science Corp based in California. The device revolutionizes brain-machine interfaces by replacing metal electrodes with living neurons, enhancing communication between the brain and external devices. Use green to portray the neurons inserted in the device, while the brain tissue is shown in blue color. Circuit illustrations symbolize the connection between biology and technology, standing out against the soft background.

    Dispositivo Biohíbrido Revoluciona Interfaces Cérebro-Máquina com Neurônios

    Design a flat, corporate-style 2D vector art, resonating with innovation and technology. The main focus of the illustration is a graph demonstrating the evolution of language model alignment techniques. Highlight the impact of Direct Preference Optimization (DPO) over traditional human feedback reinforcement learning (RLHF) methods. Further, include visual elements related to artificial intelligence and algorithms. Set this depiction against a white, textureless background. Also, incorporate blue and green hues, symbolizing innovation and technology. Lastly, use arrows to indicate the progress and evolution of the methods.

    Inovações no Alinhamento de Modelos: A Revolução do DPO e suas Versões

    Create a corporate-style vectored image in a flat 2D, linear perspective. In the center of the image, there is an accurately illustrated robotic arm symbolizing Artificial Intelligence. The robotic arm is holding shopping bags, which signifies consumerism and purchases influenced by AI. Set against a clean white, textureless background, data charts reflect how AI impacts purchase decisions. These charts and graphs could include pie charts, bar graphs, or linear plots revealing the growing influence of AI in marketing decisions.

    Como a Inteligência Artificial Está Transformando as Recomendações de Marcas

    Fique por dentro das últimas novidades em IA

    Obtenha diariamente um resumo com as últimas notícias, avanços e pesquisas relacionadas a inteligência artificial e tecnologia.

    Obrigado pelo envio!

    logo genai

    GenAi Br © 2024

    • LinkedIn
    bottom of page